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7. EXTENDED ELECTRONIC STATES
IN PROTEINS

A new approach to the problem of electron states in the protein
molecule is developed. A "dielectric cavity" model of protein
globule is used to study its extended states that basically are
formed by the polarization field of the protein macromolecule. The
size of such extended states in protein solutions can be compared
with the size of protein globule. Possible role of these states in
the charge transfer processes in biomacromolecules is discussed.
The electron energies for the ground and the first excited states
are calculated. The characteristic values of predicted energies of
absorption and luminescence bands are found, ~1000 nm for the
absorption band in the ground state and ~2000 nm for the
luminescence band in the excited state. Various ways of
experimental observation of such states are discussed.

1 Introduction

One of the central problems in molecular biology is the problem of
long-distance electron transfer. At present, the fact of
long-distance electron transfer in biological systems is well
established. Theoretical studies in this field were stimulated by
the work [1], where the temperature dependence of electron
transfer rate from cytochrome ¢ to chlorophyll was measured. The
currently predominant point of view describes the mechanism of
transfer as multitunnelling with unambiguous identifiable
intermediates [2]. The theoretical foundations of electron
transfer in application to biological systems were laid in the
works of Foerster [3,4], Marcus [5], Jortner [6] and Hopfield
[7,8), which in their turn were based on the idea of non-radiative
electron transfer in condensed media, first developed by Peckar
[9], Huang and Rhys [10]. The starting point of this idea was the
suggestion about polaron states in condensed systems, which plays
the central role in further development of electron transfer
studies. It was a "polaronic" Hamiltonian that was used as a start
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in [9,10). Thus, the achievements of the polaron theory in
condensed systems can broaden our knowledge about electron states
and transfer in biological systems.

The most general concept about polaron may be given in the
following way. Let us consider an electron in a polar medium,
where it shifts to an autolocalized state and does not form
chemical bonds with the atoms of the medium. Such a state may be
described as trapping of the electron by a potential well formed
by electron-induced polarization of the surrounding molecules of
the medium [9]. On this basis new results were obtained [11,12]
according to which there is not only one but a whole set of
discrete polaron states each having its corresponding potential
well, self-consistent with the state of electron trapped in this
well. An important principal consequence of these works is that
even the first excited self-consistent polaron state has a large
radius and can include (in the case of water, ammonia and other

polar liquids) roughly 103— 104 and more molecules of the medium.
These results also show that it is necessary to analyse the
problem of long-distance electron transfer critically, namely to
study its role in and impacts on biological systems. In this paper
we consider states with large radii only in protein
macromolecules. It will be shown that the assumption of the
existence of electron states with large radii leads to many new
results. The very fact of their existence suggests that new types
of absorption and luminescence possibly occur in globule protein
solutions. In the case of spherically symmetrical proteins with
electron acceptor located in the globule centre the condition of
formation of the excited polaron state with large radius implies
isotropy of binary chemical reactions under photoexcitation.

In the present paper we would like to make consistent the
representations of "polaron-in-condensed-medium"” physics with the
polaron properties of protein macromolecules. The simplest
mathematical models of polaron states in proteins will be
formulated and some of their consequences will be discussed.

2 Continuous Model

To introduce concepts about electron states with large radii in
globular protein macromolecules it 1is necessary to examine
continuous representations of these entities. It is also important
to discuss the hierarchy of continuous models we will use. The
representation of protein macromolecules (which takes spherical
form in solutions) as micro phases included in solutions has been
introduced in [13] on the basis of hydrophobic properties of
protein. The development of electrostatic models of protein
globules [14,15]) led, in its turn, to their hierarchy. Fig.1 shows
the simplest electrostatic model of protein globule, the
dielectric cavity model. It assumes €1<eo’ which corresponds to

low static dielectric permittivity of protein medium compared with
highly polar solvent. One should stress that in the framework of
this simplest model it is possible to explain qualitatively many
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experimental results on protein transfer and electrophoresis [16].
Figure 2 presents a three-layer globule model. It takes into
account the contributions of polar amino acid residues to
dielectric permittivity in the region R1<r<R2 the penetration of

water molecules into the surface layer, the surface unevenness,
etc. We assume that solvent molecules cannot penetrate into the
region r<R1. In this model 81<€2<€0 . The values of dielectric

permittivity can be experimental ones, €1~4 corresponds to

dielectric permittivity of NN-dimethilacetamid, a monomeric analog
of peptide frame of protein (the tight region r<R1, where the

solvent molecules cannot penetrate); co=80 corresponds to

dielectric permittivity of water as a solvent.
The layer (Rl, Rz) is ascribed a mean value € ~40 which in

general is a model parameter. There is a great number of models
which assume that dielectric permittivity inside the globule

depends on coordinate (e=|?| [17] et al.) and various nonlocal

Fig.1. The two-layer model of the protein globule.
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Fig.2. The three-layer model of the protein globule.
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Fig.3. A plane projection of an instantaneous configuration of
the ferredoxin molecule main chain (-N-C -C-)54 (a); overlapped

projections for 10 successive configurations of the molecule
taken at a time interval At=0.6 picosec.

models of dielectric cavity.

To establish a mathematical model of polaron-type electron
states in the protein globule the most important parameter
Jjustifying the continuous approach is the ratio, <r>/a where a is
a mean distance between neighbouring atoms of the protein
molecule, <r> is the effective radius of polaron. The estimation
of a.draws a clear distinction between a protein macromolecule and
an ionic crystal, for the latter the condition <r>/a » 1 being the
criterion of model continuity. In ionic crystals polarization is
caused by small deviations of atoms from their equilibrium states,
so that a ~a (a is a lattice constant) whereas a protein
macromolecule requires an additional averaging if the life time of
the state in question is much longer than the characteristic time
of oscillation of torsional degrees of freedom and deviations of
macromolecule polar groups (usually less than 10 2 sec). This
case is illustrated by Fig.3 based on the results of molecular
dynamic computing experiment. Thus, for the long-lived states
considered below the continuity condition is met in the case of
protein globule much better than in the case of ionic crystals.

3 Polaron Model for Infinite Isotropic Medium (according to
Peckar [9])

Polaronic description of an electron state in polar medium usually
starts with the assumption that the mean Coulomb field induced by
the excess electron locally polarizes the medium. The polarization
electric field, in its turn, acts upon the electron [9]. It is
essential that the electron interacts only with the inertial part
of polarization it induces,
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B =B (@ -B (D (1)
[} =]
where
80-1 3 ? em—l ﬁ
l_go= dne ’ @ 4ne
o] <]

are specific dipole moments of static and high frequency

polarizations, g, and €, are static and high frequency

permittivities, respectively; D is the induction caused by the
electron.
Thus,

B(r) = , (2)

E_1=e;1—c;1 is effective dielectric permittivity. The vector of

electric induction caused by the distributed charge of electron

with the density eI‘I/(?)I2 is equal to

3 3,
B@) = eJ|W(?')|2—3£3£—3 a? (3)
IF-r|

where W(?) is the wave function which can be determined from the
solution of Sschrédinger equation

2

gﬁ AV(R) + eN(R)W(D) + we(d) =0 , (4)

where W is the energy of electron. The potential H(?) created by

the electron-induced polarization VH(?) = 4n?(?) is defined,
according to (2) and (3) by the Poisson equation

AT(R) + 4me ‘el¥ (D)% =0 (5)

The system of nonlinear differential equations (4) and (5)
totally determines the electron state in the infinite polar
medium. To find the ground state of (4),(5), the variational
principle has been used in [9]. In [11] the equations (4) and (S)
have been integrated numerically and the solutions have been found
corresponding to the excited polaron states different from the
ground state. The approach developed in this section is wused
further to describe polaron states in the protein globule.
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4 Equation for Polaron in the Protein Globule

The mathematical model of polaron states in the protein globule
described by the dielectric cavity model is based on the following
assumptions:

1) the globule is neutral, its effective surface charge on the
layer boundaries being zero;

2) the electron states in the protein globule are considered as
the states of polaron bound by the acceptor potential;

3) for each layer of the globule an isotropic model is assumed
as well as corresponding smoothness conditions for the electron
wave function and for the potentials inside each layer and on its
boundary;

4) all the other assumptions are the same as those adopted for
the description of polaron states in polar media [9}.

In the case of spherical symmetry the assumptions 1)}-4) yield
the following equations for polaron in the protein globule

2
8% 1 d =2d _ (6)
m (;E a T aF)W(r)+e(H(r)+¢(r))W(r)+ww(r) =0

(7)
r
r

"1N|>—h
Q-IQ.
=
Q.

R._<r <R,, 1i=1,2...; R =0, (8)
i-1 i

where ®(r) is the potential of acceptor

q/elr+c1, r<R1
&(r)= (9)
q/czr , r>R

for the two~layer model of the globule (82=€0)

and

/e r+c’, r<R
e, 1’ 1

o(r)= q/e2r+cz,R1<r<R2(10) (10)

>
q/c3r R r R2
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for the three-layer model of the globule (c3=eo). M(r) is the

potential of electron-induced polarization, p is the effective

~=1 1 -1 . R <
mass of electron, ¢, =sw —81 are effective dielectric constants
1

of the first layer, €, is the high frequency dielectric constant

assumed identical for all the layers.

The natural boundary conditions for the equations (6),(7) follow
from the conditions of boundedness and continuity of the wave
function and the condition of potential continuity on the
boundaries of the globule layers

pge
¥’ (0)+ 2\I/(O) =T1’(0) = 0, ¥(w) = Mw) =0
€ h
1
¥(R,-0) = ¥(R,+0)}, ¥’ (R,-0) = ¥ (R, +0) (11)
i i i i
H(Ri—O) = H(Ri+0), eiﬂ’(Ri-O) = 81:1”'(R1+0)

The equation (6) is the Sschrddinger equation for the electron
in the potential -(IT+®) which is defined in a self-consistent way
by the equation (7). Thus, the nonlinear system of differential
equations (6)-(7) with the boundary conditions (11) describes
coupled polaron states in the protein globule. Its solution
determines the wave function of electron state ¥, the energy of

electron W and the total energy of state IQ given by the

functional
h2 2.2 2 > e
I [¥, 1] = =— |(V¥)dr - e|¥ (1T+d)dr + £

i 2.0
] o 2 I(vm a2 (12)

i Br
Q.
i

In the last term of (12) the integration is carried out over the
Qi regions that correspond to the layers of dielectric cavity

model. Note that the equations (6),(7) can be obtained by an
independent variation of the functional (12) over the wave
function y(r) and the potential II(r) taking into account the

normalization of the wave function IWZ(?)d?=1.
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Fig 4. Solution of the (6)-(7) problem for the two-layer (1)
and three-layer (2) model of the protein globule, a is zero

mode, b is first mode; the functions W(X) f4nX2¢FdX=1 and
2
H(X)—Ea (~0.091(X)) are shown Iin the upper and the lower part
ue
of Fig.4, respectively.

S Solutions of the Polaron Equations. Ground State

The system of equations (6) -~ (7) can be integrated numerically.
The algorithm of finding the solution of (6) - (7) is described in
detail in the Appendix. In the case of uniform polar media (all
81=€0) a problem of F-centre in the ionic crystal is obtained. It

was solved in [12]. As is shown in the Appendix, the system of
equations (6) - (7) has a discrete set of solutions, which
comprise the self-consistent electron states and polarization of
globule and its surrounding. The solution without nodes, which
corresponds to the ground state (zero mode) is shown in Fig.4a,
the solution with a node which corresponds to excited
self-consistent state (1st mode) is shown in Fig.4b. In this
section we will discuss only the results corresponding to the
ground state.

Table 1 gives the following values corresponding to the ground
self-consistent state (for the two- and three-layer model},
electron energy w1s and total energy I1S non-selfconsistent

electron levels in 2S (wzs) and 2P (wzp) states and total energies
that correspond to them (Izs' Izp) as well as the state radii

(<r>
1s

<r> , <r> ).

2P 25
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The table shows that for the more realistic three-layer model
the radius of polaron in the ground state <r>1s=2,3g i.e. beyond

the continuum model approximation. Accordingly, the value

Awls’zp=|wzp—wis|z1,2ev gives an approximate evaluation of

transfer energy to which the absorption band of maximum would
correspond. These bands’ position according to the evaluation
1,2eV (~1000 nm) is just in the region of charge transfers of
metal-containing proteins [19].

6 Excited Polaron State in the Protein Globule

Table 1 also 1lists ( for the two- and three-layer model of
dielectric cavity) the values of electron energies (W), total
energies (I) and radii <r> in the excited selfconsistent state
(2S) and in non-selfconsistent states 1S and 2P that correspond
to the potential polaronic well 2S (Fig 4b).

Table 1. Characteristics of polaron states in the protein globule.

Physicall) Two-layer modelZ) Three-layer model3)
value O-mode | 1-mode O-mode | 1-mode
"15 -1,316 -0,401 -2,200 -1,035
WZS -0,529 -0,256 -0,697 -0,424
NZP -0,695 -0,283 -0,806 -0,413
I1S -0, 508 -0,238 -1,243 -0,779
IZS 0,280 -0,093 0,255 -0,169
I2P 0,114 -0,120 0,146 -0,158

<r>1S 3,7 8,3 2,3 3,1

<r>2S 10,0 19,5 7,6 12,2

<r>2P 6,8 16,0 5,7 11,0

1)
The values of energies wxs’wzs’wzp and Ils’Izs’ Izp are in eV;

(o]
the avareged radii <r> ,<r> ,<r> -in A.
1s 2s 2p

€=20, €=80, e=2, R=158, p=m, 2 =1
1 2 -] 1 [o]

3) ¢ =4, ¢ =40, € =80, ¢ =2, R =7R, R_=15&, p=m , 2Z=1
1 2 3 -] 1 2 o]
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First of all note that for both two- and three laxpr models, thg
radii of excited selfconsistent state (19,5 A and 12,2 a,
respectively) greatly exceed the mean distance between
neighbouring atoms a of the medium, i.e. the continuous
approximation is quite accurate in this case. Our calculations
show that the energies of electron in selfconsistent 2S5 and in
non-selfconsistent 2P states are close to each other. In the case
of a three-layer model, the 2P state has a higher energy level
than the 2S state. Since the dipole transition to the 2S state is
allowed only from the 2P state, we can expect for the three-layer
model a longer lifetime of the excited selfconsistent 2S state.

The table also gives an approximate estimate for the

luminescence band for the three-layer model: AWZP IS=O,61eV (~2000
nm), i.e. it lies in the far infrared region. It would be
interesting to watch such a band experimentally, its

identification as a polaron could be carried out on the basis of
preliminary evaluation of qualitative impact of pH, the ionic
strength and temperature on the qualities of the "polaron" bands.

7 Dielectric Cavity Model and the Theory of Electron Transfer

It follows from what is stated above that the electrostatic model
of the protein globule can also be used for the description of
various processes of photoexcitation and electron transfer. Thus,
the probability w of electron in the excited 2S selfconsistent
state of the protein molecule tunneling from donor to acceptor is
given by the expression [6,8,20,21]:

E
w=L2exp(-=") (n/lzrr)1 "2exp(- (Er—J)2/4ErT)
W

(13)

_ ~ B 2 >
Er_ 1/8ne [ lﬁZS Bacsl dr ,

where L is the matrix element of tunnelling; B is determined from

(3); J is the reaction heat, w is the mean frequency of
polarization oscillations of the molecule, Er is the energy of

medium reorganization. The values L and Dacs can be calculated

only if the acceptor model is defined.

From (13) it follows in particular that in the electrostatic
model considered here the tunnelling probability that is
proportional to the reaction rate depends upon the kind of
electron states via the tunnelling matrix element L and inductions
BZS and Bacs' In the case of extended electron states one can
expect the dependence of the reaction rate constant on the pH of
solution and on spatial distribution of charged amino acid groups
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X(R)

Fig.5. Distribution of electronic density in the protein
globule (the three-layer model described in Section 2);

p(X)=4nx2w2(X); 1 is zero mode, 2 is first mode.

via the induction B (equation (3)) dependable on the polaron

b ¥l
wave function which embraces the most polarizable parts of the
protein molecule in the layer (R1'R2) of our model (Fig.5).

8 Discussion

The idea of extended states with large radii introduced in this
paper paves the way for a quite new approach to the problem of
long-distance electron transfer. According to the results of the
4th and 5th sections for the dielectric cavity model, the radius
of the first excited selfconsistent state can be compared with the
globule size. It means that the whole globule is involved in the
formation of such a state. If the acceptor is near the globule and
the extended selfconsistent state has roughly the same energy as
the electron state of the acceptor then it is hardly possible to
tell whether the electron belongs to the globule or to the
acceptor. In the case when the distance between the acceptor and
the globule is large, the value of the tunnelling matrix element L
(see (13)) is of paramount importance. For the states of large
radii its value may be several orders higher than that of a
small-radius state.

Each excited selfconsistent state can be related to
configurational coordinates. For a consistent description of
electron transfer one should take into account that during the
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ju

q

Fig.6. A simplest branching scheme of the electron transfer
configuration coordinate q.

transfer ©process the electron can jump to intermediate
selfconsistent states of the acceptor and then to the ground
state. Thus, a complex picture of electron transfer with
branching of the reaction coordinate becomes feasible (Fig.6).

The simplest case shown in the figure, i.e. the transition from
the state B to C can be either radiative or non-radiative; in the
more general cases, the cascade radiative and non-radiative
processes are possible.

The existence of excited selfconsistent states may lead to
interesting peculiarities in the lines of EPR, NMR, IR absorption
spectra and others. They can be used for identification of such
states. The discussion of these questions, however, is beyond the
scope of this paper.

Appendix

Finding the Polaron States in the Globule

10. We shall seek spherically symmetrical solutions of

differential equations (6)-(7) with boundary conditions (11) for
the globule models shown in Figs.1 and 2. For that purpose we
introduce new variables

HE  1/2
re—2 _x, wm =8l v
2u|W])

(A1)

M(r) = lgl Z(X)

From the condition of wave function normalization one obtains

116



Extended Electronic States in Proteins

[e4]
e where r = § Y2(X)X%dX
h e T o

2 1/2
=Pt wn=d) pEh XK
2 0 T 2~3/2
2ue 'e
(A1)
3
ey = e 20
h™ Te
e

Also we introduce the notation &(r) = igl d(X).

Substituting (A1) into (6) and (7) we obtain equations with
spherically symmetrical solutions

) .
2 Y;X) + % dg;x) +Y(X)(Z(X) + ¢(X) - 1) =0
dx
(A2)
2
d z;x) . 2 9%%51 + 2(X)Y(X) = 0
dx

For the two-layer model of the globule (Fig.1):

(")[(')
o

£
0
(1 - . ), X« XR
1 R 1

>z
+
><|Z

8(X)=

X =z XR

:d><|2

where XRis the dimensionless radius of the globule

2;1e2

The new parameter N is proportional to the charge g=Ze:
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172

T
N = (TWT) heo rz

ml M2
o

(o]

The piecewise-constant function 2(X) breaks on the surface of the
globule

2(X) =

Analogously, for the three-layer model (Fig.2)

€ € € €
N "o N 0 0 N o]
g+t (-2 s (1-22), X<
X £ XR1 €, € XR2 £ XRl
€ €
Civy—) N O N _ 0
¢(X)—4 X E + —)(R?— (1 e—') , XRS X = XR
2 s 2 1 2
N
2 X > Xp
2
c/c1 R X < XRl
2(X) =4 e/, X =X <X
2 R R
1 2
1 s X=X
L R,

The solutions of equations (A2) must satisfy the conditions on
infinity that follow from (11), be bounded at zero and meet the
corresponding internal boundary conditions at break points of the
piecewise-constant function 2(X).

The boundary conditions for the equations (A2) have the form

£
2Y’ (0)+N 59 Y(0)=Y(w)=0, 2’ (0)=2(w)=0 (A3)
1

For the internal boundary conditions the following relations can
be written
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Y(XR —O)=Y(XR +0), Y'(XR —O)=Y'(XR +0)
i i i i
(A3%)

Z(XRi-O)=Z(XRi+O), 812’(XRi-O)=ei+1Z’(XRi+O)

Here i=1 for the two-layer model of the globule (R1=R, 52=50) and

i=1 and 2 for the three-layer model (E3= Eo).

2°. The solutions of the problem (A2) with the boundary

conditions (A3) and internal boundary conditions (A3’) were found
in the same way as in the problem of polaron in a homogeneous
polar medium /11/ and in the F-centre problem /12/. Moreover, to
find the polaron states in the globule the solutions for the
F-centre problem were used.

The procedure of solution finding is obvious for the problem of
polaron in a homogeneous polar medium, so here we will describe
the algorithm for just this case. Further we show how the problems
of our interest could be dealt with.

2.1. The equations for a polaron in the homogeneous media can be
regarded as a particular case of the (A2) equations, when €1=€o
and N=0. The mathematical formulation is reduced to finding the

solutions of the boundary problem

Y7 (X) + % Y (X) + 2(X)Y(X) - Y(X) = 0

27 (X) + % 2/ (X) + Y2(X) = 0 (Ad)

Y (0)=2' (0)=0; Y(w)=Z(w)=0

It has been shown in /11/ that this problem has a set of
solutions of the following character: zn(X) (n=0,1,2... where n is

the solution number) tends to zero monotonically as X»wo, and Yn(X)
crosses the X axis n times, then approaches zero as X-w.
Now we change variables (£=XY, n=XZ) and the equation (A4) takes
the form
£+ E(wX - 1) =0
(AS)
7"+ £2/X = 0

119



Extended Electronic States in Proteins

£(0)=0(0)=0; €(w)=n' (0)}=0 (A6)

2.2. The solutions of the (AS) system satisfying only the
left-hand boundary condition (A6) may be presented in the
neighbourhood of the point X=0 as power series

£(X)

2 3
aX+aX +aXxX + ...
1 2 3

2 3
7n(X) b1X + b2X + b3X + ...
Substituting these series into (A5) one finds that all
coefficients a, and b1 can be expressed in terms of aIEa and blsb.

Confining ourselves to theseveral first terms of the series, we
can, at a point X0 which is not distant from the point X=0, find

with desired accuracy the values of E(Xo,a,b) and n(XO,a,b) and

their derivatives corresponding to concrete values of a and b
parameters.

2.3. For the system of differential equations (AS) we define the
Cauchy problem in the interval [Xo‘xx]' For this purpose,

€(X0,a,b), €’(Xo,a,b), n(Xo,a,b) and n’(Xo,a,b) are calculated at
X=Xo (X0 is small) with the given values of parameters a and b.

Then the solution of the Cauchy problem is found numerically on a
computer using the standard Runge-Kutta method.

Note that the second equation of the system (A5) yields a convex
function 7(X), 7"(X)<0 for all X=0. This property of n(X) is
crucial for constructing an algorithm of boundary problem
solution. If the values of a and b parameters are chosen so that
the solution of 7(X) tends to a constant at X»w then £(X) will
also tend to zero. Thus, one of the solutions for the boundary
problem (AS)-(A6) is found.

2.4. Now we take an interval [Xo’XK] and, giving different

values to a and b parameters, begin to solve the Cauchy problems
corresponding to them. Figure 4 shows some of the solutions.
Choose an XK corresponding to the maximum of such a solution for

* * * *
which a=a and b=b (a and b are concrete numbers). Define the
function

F(a,b]En’(XK,a,b).
Now we shall solve the Cauchy problem on a new interval [Xo’XK]

Taking different values of a and b parameters and solving the
corresponding Cauchy problem we thus calculate the values of the
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function F(a,b). The equation

F(a,b)=0 (A7)

implicitly defines a dependence between a and b parameters. Here,
because of the choice of XK, one point of this dependence is known

in advance, namely,

E 2
F(a ,b )=0.

The dependence (A7) in the given intervals of a and b parameters
can be found using the CURVE program /22/. Figure 8 shows a
dependence thus obtained.

The solutions of the Cauchy problem for the different values of
a and b parameters taken consecutively along the curve are shown
in Fig.9. Analysis of the curves &(X) suggests the existence of a
set of boundary problem (A5)-(A6) solutions. They may be arranged
in the following way: En(X) (n=0,1,2...) crosses the X axis n

times and then approaches zero exponentially; =n (X) rises
n

monotonically to its extreme value 7 (o).
n
2.5. Now we define a system of two functions of three variables

Fi(a,b,xx) = 6’(XK;a,b)
(A8)

Fz(a,b,XK) =9 (XK;a,b)

This definition means that, in order to find the values of
functions F1 and Fz' the Cauchy problem is solved in the interval

[XO,XK] with the initial conditions corresponding to the values of

a and b parameters. The values of & and n’ at the end of the
integration interval determine the values of the function. The
system of equations

F (a,b,X)
1 K

]
o

(A9)
Fz(a,b,XK) =0

determines a curve in the space of variables a, b and XK. We have

found pieces of several curve branches. To do this, we chose
initial approximations to the corresponding curve branch and the
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7 n(X)

‘21

Fig.7. Functions n(X) for the different initial data
determined by a and b parameters, 1: a=1.2, b=2.0; 2: a=1.1,
b=2.0; 3: a=1.02, b=1.94; 4: a=1.0, b=2.0.

10fs

a
.
0y 2 3 a4 s

Fig.8. The dependence between the parameters a and b following
from (A6) at Xk=10.

CURVE program found the points on the corresponding branch of the
(A9) curve in the given interval of the parameters a, b and XK.

At Xx+m, the conditions (A9) are identical to the right-hand

boundary conditions (A6). In fact, in the polaron problem, it was
enough to go up to XK=1O for the zero mode (n=0), Xx=15 for the

first mode (n=1) and Xx=20 for the second mode (n=2) to obtain the

boundary problem solutions accurate to several figures.
Fig. 10 shows two solutions of those boundary problems obtained
by the procedure just described.

3°. The problem of F-centre differs from the problem of polaron
in a homogeneous polar media in additional terms of the sum NY/X
in the first of the equations (A3), where N 1is the problem
parameter. The solutions for different values of N were sought on
the corresponding curves that pass through the polaron solutions.
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a, c,

2

Fig.9.

values of a and b on the curve (A9). a=0.733, b=1.664 (a);
a=1.003, b=1.921 (b); a=1.025, b=1.942 (c); a=0.623, b=1.662
(d); a=0.900, b=2.074 (e); a=1.338, b=2.727 (f).

The solutions of the Cauchy problem for the different

29 2
£4 X) £4X)
0 5 15 X 0 15 %
1 - é nJX)
a. b.

Fig.10. The solutions of the boundary problem (A5)-(A6):
a=1.021, b=1.938 (a); a=1.091, b=2.320 (b).

Let us write down the system of equations

FI(N,a,b) £ (XK;N,a,b)

[
@]

(A10)
F_(N,a,b)
2

]
(@}

n (XK;N,a,b)
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The known values at N=0 for polaron states were chosen as initial
points lying on the curve (A10). The dependences themselves were
calculated by the CURVE program . To refine the solution at the
given N, new functions were introduced

Fi(a,b,XK) 3 (XK;N,a,b)

Fz(a,b,XK)

n’ (XK;N,a,b)

Then the procedure analogous to that used in the case of polaron
for the system (A9) was repeated.

4°. The problems of polaron and F-centre in a homogeneous polar
media considered above give an idea how to find spherically
symmetrical polaron states in different models of the protein
globule. Let us analyse the case of the two-layer model (Fig.1).
Finding the solutions for the case of multi-layer model differs
only in "technical” details.

The initial model (Section 4) takes the values {el,sz,em,R,Z) as

physical parameters. In the boundary problem, (A2)-(A3) there are
XR and N instead of R and Z, with the relationships between them

2
><R=RZ~—‘““?21‘1
€ h
0
(A11)
Eo
N=2 —T
€
o
® 2 2
Since the value v = [ Y%(X)X"dX is not known in advance, the
0

values of parameters XR and N that correspond to the given globule

radius R and the charge Z are also unknown. Their product though
is known

Zue2 RZ
>4

= const (A12)
2
h 0

NX, =

In the right-hand part of (A12), there are only the universal
constants and model parameters. The dependence (Al2) suggests the
following scheme of solution finding.

Step 1. We go over to the variables £=YX, n=2X. Representing
£(X) and n(X) as power series.

_ 2
£(X) = alx + a2X + ...
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_ 2
7n(X) —b1X+b2X + ...

and substituting them into (A2) we find a two-parameter family of
the (A2) solutions in the neighbourhood of the point X=0 that
satisfy the left-hand boundary condition (A3). The parameters
a, and b1 are equal to Y(O)=Yo and 2(0)=20, respectively.

Step 2. We start from the known equations of the F-centre
problem. Let Y;, 22 and N; be the values of system parameters that

determine a mode of the F-centre. According to (Al12),

X;= const/N‘. The system of equations is defined as follows

F (Y ,Z ,e) E'(X;Y,Z,e) =0
1 0 %01 k' 0’70’1

(A13)

1]
o

FZ(YO’ZO'el) n (XK;YO’Zo’sl)
£ * *
Let € =80 and N=N . Then the point (Y ,Z ,e )=(Y ,2 ,e ) lies on
1 0’70’1 0’%0’ 0o

the curve (A13) because of the choice of initial parameter values.
One may use the CURVE program to locate the curve branch passing
through this point. Thus, it is possible to advance from cl=80 to

€1=20 which was found in the two-layer model.

Step 3. Let us define the system of equations

1]
o

Gl(YO,ZO,N) g'(xK;YO,zo,N)
(A14)

G (Y ,Z ,N)
20"

1l

n (XK;YO,ZO,N)

fl
(@]

Starting from the previous solution with 80=80, el=20 and the
corresponding values of parameters Yo, Zo’ N we locate the curve
branch with the help of the CURVE program. For each point found
o«
lying on the curve we calculate I' = [ Y2X2dX and then
0
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h28

0
2

N
I
- =
m[omz

R = XRF and

2ue

(@]

This procedure along the curve is carried out until the model
parameters R=15A and Z=1 are reached (because of (A12) it will
happen simultaneously). Thus, the solution of the boundary problem
for the globule model in question will be found.

Step 4. If necessary, the solution can be refined, making Xx a

parameter and moving along it to the greater values. The examples
of solutions for the polaron states in the globule are shown in
Fig.4.

Step 5. To find the spectral characteristics of electron in the
potential field of selfconsistent polaron states, the linear
Sschrédinger equation has been solved with the potential
U(X)=Zn(X)+¢(X) where Zn(X) is the n-th solution of the boundary

problem. However, some difficulties arise here because the
function zn(X) is defined only on a discrete sequence of unevenly

distributed points. In such cases it is a common practice to use
interpolation formulae. We tried another way. Namely, to the
linear Sschrddinger equation

1(1+1)

N, o2y _ -
2 g+ Q(i +9) - A =0 (A15)

cu -

the following equations for polaron states were appended

€7 + E(/X+8) - £ =0

(A16)
n” + 2(X)E/X = 0

and these three equations were considered as a system of
differential equations. The variable ¢ is not included in (A16),
so each time 7(X) from (A15) is reproduced unaltered
(corresponding to the polaron mode and at the points conforming to
(A15)). It does not depend upon the values and initial data for
¢{X). For the given 1 (orbital moment) and n (number of zeros), A
was found by the halving procedure. The results of calculations
are presented in Table 1.
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